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engineering data. Obtained numerical analysis, demonstrate 
the validity of proposed method.
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1 Introduction

By increasing the green energy installed capacity, the wind/
solar power output prediction error precision provides seri-
ous challenge for researchers to the stable operation, dis-
patching as well as the safety and the quality insurance over 
power systems (Manla et al. 2010). On the other hand, to 
decrease such adverse effects on the power grid, wind-solar 
hybrid power generation system composed with storage bat-
teries which have been used widely in several countries. It 
is clear that, once the battery’s storage have been improved, 
the quality of output power can improved well.

Also, beside of the mentioned problems, the prediction of 
battery’s behavior is an important problem in hybrid power 
systems based on solar-wind and battery (Loia et al. 2017; 
Abedinia and Ghadimi 2013; Meissner and Richter 2005; 
Akbary et al. 2017). Although the batteries have been used 
widely in power systems, their electrochemical reactions 
hides an unexpected complexity.

Recently, different methods have been introduced for 
simulation of battery behavior, which includes various 
degrees of complexity and simulation quality. Moreover, 
different battery behavior prediction models have been car-
ried out. Where, the lead–acid batteries used in the hybrid 
solar–wind power generation systems are proposed to penal-
izing operating situation (Manla et al. 2010; Karden et al. 
2007; Eskandari Nasab et al. 2014; Ghadimi and Firouz 
2015). In Valenciaga and Puleston (2005), comprehensive 
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supervisor control model is proposed to regulate the out-
put power wind-solar-batteries system to follow different 
load demand as well as maintain state of charge in batter-
ies. In Datta et al. (2011), to improve the life time of bat-
teries and the maintenance cost, an algorithm is proposed 
for a PV–diesel hybrid system to choose the optimal bat-
tery capacity. In Noruzi et al. (2015), fuzzy multi-objective 
optimization problems have been proposed by authors to 
decrease the cost of production and pollution in a wind-solar 
hybrid power system through reliability and environmental 
benefit. Combination of heat and power systems with storage 
battery system is presented in Milo et al. (2009) for hybrid-
power micro-grid system to improve the reliability in stand-
alone mode and economic exploitation in grid-connected 
mode. In Zou et al. (2014), the short-term power prediction 
of wind and solar power is utilized to quantify the available 
output power of each generation component, which is taken 
as constraint conditions of optimization problem with state 
of charge (SOC) of the batteries.

1.1  Contribution of paper

In this paper, we proposed a new hybrid forecast method 
for battery’s behavior as well as the wind and solar power 
output. Currently, different prediction models have been 
presented to increase the wind power prediction accuracy, 
however because of limitation of the forecast technology and 
the characteristics of the wind volatility and complicated 
behavior of solar energy, an accurate prediction model is 
still demanded.

This article, proposed a hybrid power system based on 
wind-solar and battery. At first the proposed hybrid system 
is introduced and then, a new stochastic search algorithm 
is presented for minimizing the number of on/off-off/on 
switching of wind turbines and PV modules and maximize 
the utilization of the regulation capability of wind turbines, 
particularly, the predicted power of wind and solar is taken 
as generation ability of wind turbine and PV module. The 
prediction model is based on a feature selection which deals 
with mutual information (MI) and interaction gain (IG) of 
features, neural network (NN) based feature selection and 
a new stochastic search algorithm which optimized the NN 
based forecast engine. Beside of this presentation, a model 
of battery is presented. Obtained results proof that the use 
of the proposed method cause a significant improvements in 
tracking the actual desired demand, and a bulk decrease of 
on/off-or-off/on switching number of wind turbines.

So, the contribution of this paper can be summarized as:

1. A prediction model of battery behavior is presented 
based in stand-alone hybrid wind-solar power genera-
tion systems

2. A new enhanced stochastic search algorithm has been 
proposed which is based on shark smell optimization 
(ESSO) algorithm.

3. An accurate forecast engine is presented based on NN 
and ESSO.

1.2  Organization

The remaining parts of paper can be presented as follows. 
Sect. 2, presents the proposed hybrid power system based 
on wind-solar and battery. The proposed prediction method 
is presented in Sect. 3. Section 4, introduces the new sto-
chastic search algorithm. Numerical analysis are presented 
in Sect. 5. Section 6 concludes the paper.

2  Hybrid wind–solar battery power system

The proposed hybrid power system includes three main sim-
ulation of wind-solar and battery. In this section we intro-
duce each simulation. And at the end the structure of battery 
behavior is presented (Manla et al. 2010). For some system 
data, we used from other papers such as Manla et al. (2010). 
The modeling of proposed system is given as:

2.1  Wind power system model

In wind power system the blade tip speed ratio as well as 
blade pitch angle, are important sections which can be for-
mulated as: 

where Pwt is the mechanical power extracted which is 
related to the wind turbine rotor, ρ the air density, A presents 
the swept area of the rotor and finally, Cp introduces the 
power coefficient which defines the rotor aerodynamics as 
a function of both tip speed ratio. In this equation, λ, is the 
pitch angle of the rotor blades, β. Where, the tip speed ratio 
can be presented as the ratio among the blade tip speed and 
the wind speed as follow: 

where ωr is rotor speed and R is radius of the wind turbine 
rotor.

The power extracted from the wind is maximized when 
the rotor speed is such that Cp in Eq. (1) is maximized, which 
occurs for a determined tip speed ratio. Therefore, the con-
trol system of wind turbine is able to assure that maximizes 
the output power for a wide range of wind speeds, according 
to the optimum power extraction curve (Loia et al. 2017).

(1)P
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=
1

2
Cp(�, �)A��
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2.2  Photovoltaic model

The PV module is an important factor in solar power gen-
eration where its mathematical modeling is presented in 
the following where, in this system, the output terminals 
of the circuit are connected to the load where its voltage 
current equation of the PV module as: 

And 

where, Ipv introduce the output current of PV module, Iph 
introduce the photo current, I0 is diode reverse saturation 
current, Vpv presents the output voltage of PV module, Rs 
presents the series resistance, ns presents the number of cells 
in series, m defines the diode ideality factor, Vt defines the 
thermal voltage, Rp defines the shunt resistance, k defines 
the boltzmann constant, Tc is boltzmann constant and q is 
electron charge (Eskandari Nasab et al. 2014).

Moreover, the photo current Iph is evaluated by the solar 
irradiance Gc, module temperature Tc, as well as tempera-
ture coefficient α comprehensively. Where we can write: 

where Gr defines the standard solar irradiance, Tr repre-
sents standard temperature, and Icc introduce short circuit 
current to standard irradiance and temperature. And the 
diode reverse saturation current I0 is determined by the 
diode ideality factor m, standard temperature Tr, standard 
temperature Tr, module temperature Tc, and thermal volt-
age Vt. Where: 

I0r presents the reverse saturated current for standard 
temperature and Vg defines the energy gap. The power out-
put of a PV module could be presented as: 

where IPV is output current, VPV is operating voltage of 
PV module, and PPV is output power of PV module.

(3)

Ipv=Iph − I0

[
exp

(
VPV + IPVRs

nsmVt

)
− 1

]
−

VPV + IPVRs

Rp

(4)Vt =
kTc

q

(5)Iph=
Gc

Gr

[Icc + �(Tc − Tr)]

(6)I0=I0r

(
Tc

Tr

)3∕m

exp

[
Vg(Tc∕Tr − 1)

mVt

]

(7)PPV = VPVIPV

2.3  Prediction model of battery behavior

In this paper the lead-acid battery has been considered in 
hybrid power system. These kinds of batteries includes 
two characteristics as state-of-charge (SOC) and the float-
ing charge voltage (or the terminal voltage). Where, the 
SOC model is improved according to the hour counting 
method to simulate the lead–acid battery SOC behaviors in 
this paper (Buller et al. 2003). However, because of some 
errors in this method measurement, the floating charge 
voltage model will be considered in this simulation.

2.3.1  Model of battery state‑of‑charge

The problem of battery SOC is an important key in all 
batteries applications but, an accurate model is needed 
to prevent some drawbacks such as; not fully charged, 
over-discharged, or overcharged, etc (Gollou and Ghadimi 
2017). In this paper, the ampere hour counting method, 
is considered for the mentioned SOC calculation. In this 
model the charge or discharge time and the current value 
can be evaluated as: 

where  SOC0 presents the battery SOC of the starting 
point; t and t0 are the time of interest and the time of the 
starting point, respectively, Ibat is the battery current, Cbat 
defines the battery capacity. Furthermore, by considering 
the losses occur during battery charging and discharging 
as well as during storing periods the SOC can be evalu-
ated as: 

where σ is the self-discharge rate, ηbat presents the bat-
tery charging and discharging efficiency. According to all 
chemical procedures, the battery capacity Cbat is tempera-
ture dependent which can be evaluated as: 

where Cbat is the available or practical capacity of the 
battery through the battery temperature of Tbat; C′bat defines 
the battery’s nominal capacity (Usman Iftikhar et  al. 
2006). In the proposed hybrid power system, to cover the 
load demand three resource components are considered 
as PV module, wind turbine and battery. In this paper we 
neglect the cable losses, so, we can write the battery cur-
rent Ibat as: 

(8)SOC = SOC0 + ∫
t

t0

(
Ibat

Cbat

)
d�

(9)SOC = SOC0

[
1 −

�

24
(t − t0)

]
+ ∫

t

t0

(
Ibat�bat

Cbat

)
d�

(10)Cbat = C�
bat
(1 + �C(Tbat − 298.15))

(11)Ibat =
PSolar + PWind�rectifier − PLoad∕�inverter

Vbat
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where the power of the PV array, wind turbine, and load 
are presented by PSolar, PWind, and PLoad, respectively. Vbat 
represents the battery voltage. In this study the rectifier 
is used to transform the AC power from the wind turbine 
to DC.

2.3.2  Model of battery floating charge voltage

In this paper, model of battery floating charge voltage simu-
lated by the equation-fit method, which can be presented as: 

where V′bat is the battery floating charge voltage which 
can be presented based on temperature effect on battery volt-
age predictions (dT): 

where  Vbat is the calibrated voltage of the battery based 
on temperature effects. Also, the δV temperature coefficient 
is considered as − 4. Also, the presented parameters in (12) 
can be calculated as: 

where the a1, …, a3, …, d1, …, d3 are to be determined 
based on Least Squares Fitting method. In the following the 
battery charging test results in different currents is presented 
in Fig. 1. Also, the same figure is presented for discharging 
process as shown in Fig. 2.

(12)V
�

bat
= a(SOC)3 + b(SOC)2 + c(SOC) + d

(13)Vbat = V �
bat

+ �V (Tbat − 298.15)

(14)
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3  Short-term power prediction for wind and solar 
power

In the following the schematic of active power control is pre-
sented in Fig. 3, which is based on power output that defines 
the sum of wind, photovoltaic and battery power generations 
(Le Mehaute and Crepy 1983; Jalili and Ghadimi 2016; Fang 
et al. 2012). The mentioned sum of power output in power 
system is evaluated based on dispatching power, the desired 
output power frequency, as well as power ramp rate limit. 
After that, the referred power facility to every wind turbine, 
PV module as well as battery based on running condition 
and the available active power, which is the predicted power 
from the block of short-term power prediction. In the next 
section, proposed forecast engine will be introduced which 
highlighted in Fig. 3.

3.1  The forecast engine structure

In whole process of forecast first, the input signal should be 
filtered to provide a well signal for estimation model, hence, 
we used two stage feature selection based on the information 
theoretic criteria of mutual information (MI) and interaction 
gain (IG). This model includes two cascaded filters to sift 
the irrelevant and redundant candidate features, respectively. 
Only the relevant non-redundant applicant inputs, organiz-
ing a minimum subset of the most revealing features for 
predicting the output adjustable, are selected by the feature 
selection policy. As this feature selection technique is not 
the focus of this paper, it is not further conversed here. The 
concerned reader can refer to (Fang et al. 2012) for specifics 
of this method.

After feature selection, the forecast engine will receive 
the signal to predict. It is clear that mixture of dissimilar 
neural networks (NNs) can hypothetically rise their learn-
ing abilities in a complex technique (Fang et al. 2012; 
Ghadimi et al. 2016; Liu et al. 2017; Kumar Aggarwal 
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et al. 2009). But, in these methods the input data shared 
among their building blocks which means the mature 
sharing among the NN blocks. To attack the mentioned 
problem, a new method is introduced in this paper which 
includes three main stages. Before the forecast engine, a 
new section as preforecast will be presented which tracks 
a nonstationary signal with rapid variations. Where, if the 
multi-layer perceptron (MLP) has a preliminary predic-
tion following tendency of the target signal, so the learn-
ing tendency of signal in forecast engine can be so easy. 
Additionally, to augment the accuracy of the proposed 
preforecast, we used the new stochastic search procedure 
to optimize its weights.

All the mentioned forecast engine blocks includes MLP 
forecasters. The three NNs have LM (Levenberg–Mar-
quardt) learning algorithm. Further deliberations mitigat-
ing these choices can be found in Amjady and Hemmati 
(2009). The proposed model, is an accurate and strong 
forecast engine and delivers decent forecast consequences 
for proposed signal. Furthermore, to tackle of the overfit-
ting or underfitting problems, a new stochastic algorithm 
will be applied in this paper to evaluate the NNs weights 
(Tsekouras et al. 2006; Lam et al. 2012). Therefore, the 
proposed version of shark smell optimization (SSO) is 
realized to recover the values of three block NNs. Group-
ing of this technique surge the learning abilities of pro-
posed forecast engine in extracting the input/output map-
ping function of a complex signal. When one of the NNs 
of the proposed forecast engine is stuck in a local mini-
mum through the training phase, neither that NN nor the 
next ones may be able to leakage from this trap.

It is clear that the NNs and the ISSO constituent have 
the same training examples and validation samples such 
that the weights can be moved among them. Conse-
quently, the improved SSO tries to better minimize the 
validation error of NNs after its training algorithm is 
terminated.

4  Improved shark smell optimization

4.1  Shark smell optimization

This recently algorithm, has newly proposed by Abedinia 
et al. (2014). This algorithm is based on diverse shark 
smell abilities for localizing the answer of optimization 
problem (prey). In sharks’ drive, the concentration of the 
odor is an important factor to guide the shark to the prey. 
While, the shark moves in the manner based on higher 
odor concentration. This distinguishing is used in the pro-
posed SSO algorithm to determine the solution of an opti-
mization problem. More details of this algorithm has been 
presented in Abedinia et al. (2014). In the following the 
improvement of this algorithm will be presented.

4.2  Improved shark smell optimization

In the proposed method we improved the abilities of global 
and local search of algorithm. Accordingly, initial popu-
lation is divided into two equal groups as the global and 
local groups. If one of the proposed groups finds a better 
answer in the mentioned procedures, better results will be 
replaced by previous one. This mechanism demonstrate 
the good relationship between two mentioned groups to 
improve the abilities of proposed method (Abedinia et al. 
2014; Ghadimi et al. 2013; Ahmadian et al. 2014).

4.2.1  Global search group

As mentioned, the classic version of SSO works with posi-
tion and velocity of shark based on odors concentration. 
Once, the shark reaches the best odor particle (best answer 
in global search), the velocity of sharks reaches to zero, 
accordingly, the shark will be stop the search procedure. 
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Where, the premature convergence can be happen in local 
optima point.

So, in global search procedure, we proposed the non-stop 
(NS) technique, for improving the search abilities. In this 
model, after evaluating the shark’s velocity, if its velocity is 
less than µ, and the odor is not the best, a random number 
(R) will be generated between [− R, R] and will be added 
to that velocity. This work cause reactivates the shark, and 
makes it take part in the search process, again. In early, itera-
tion of algorithm, the value of R will be large amount, and 
by improving the processes value goes to smaller. Where, 
this random generation distributed in the interval [0, 1] and 
the model of linearly decreasing R is expressed as follows: 

where rini and rend are the initial and final values for R, 
respectively. Also, T represents the maximum number of 
iterations and t defines the current iteration. After implemen-
tation of the mentioned method, the position of shark will 
be updated. By the mentioned technique, the diversity and 
search exploration of proposed algorithm will be increased 
and prevent the mature convergence.

4.2.2  Local search group

Although the obtained point in premature global search is 
not the best one but we can use this point for improving 
the local search exploration. In other words, appropriate 

(15)R = (rini − rend)
(T − t)

T
+ rend

solutions are more likely to be found in neighborhood area 
of the point in global search, hence, we improve the local 
search exploration around the mentioned point. Accord-
ingly, the proposed algorithm will not trap in local minima 
and it can resume the search process around the best point 
to find the better solution. Consequently, we replace the 
obtained results for the best point by the following point: 

Here, the Xnew is chosen randomly between XL and XH. 
Also, xmax and xmin are the search space borders, and R is 
decreased linearly from 1 to 0 as: 

By updating the velocity and location of shark, if the 
obtained point (optimization answer) is less than the 
global point, this point will be replaced with new point 
obtained and in the next iteration, the stochastic search 
will be done around the obtained new point, otherwise it 
will not change and the search process around this point 
will continue.

(16)

Xnew ∈ [XL,XH]

XL = Xk+1
i

−
R(Xk+1

i
− xmin)

(xmax − xmin)

XH = Xk+1
i

+
R(xmax − Xk+1

i
)

(xmax − xmin)

(17)R =
T − t

t

Fig. 4  Evaluated the train-
ing results (solid line) with 
proposed algorithm (dotted line) 
and a single LM learning algo-
rithm (dashed-dotted line)
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5  Numerical results

In this step the planned technique is applied over a real world 
engineering data. Earlier, presenting numerical results of 
this test case, an appropriate insight about the proposed 
forecast engine’s performance in the training phase, a typi-
cal curve based on its error and training is represented in 
Fig. 4. Where, mean absolute error (MAE) is considered as 
the error function.

Actually, to demonstrate the validity of proposed method 
on overfitting and untimely convergence problems this anal-
ysis is presented. By considering Fig. 4, it can be considered 
that, for each stage of proposed NN based forecast engine 
by increasing the error function the training process will 
stop by replacing the last parameters of weight (based on 
proposed optimization method). So, the LM half cycle of 
the first, second and third iterations has 29, 87 − 55 = 32 and 
143 − 100 = 43 training epochs (pass through the entire train-
ing set), respectively, demonstrated by the early stopping 
model. Furthermore, proposed ISSO half cycle of the first, 
second and third iterations has 55 − 29 = 26, 100 − 87 = 13 
and 164 − 143 = 21 generations, respectively, determined by 
the stopping criterions of the ISSO.

Additionally, to present a proper vision about the pres-
entation of the proposed model of training mechanism, the 
first LM half cycle is continued after the early stopping point 
and represented by dashed-dotted line. Where we can claim 
the overfitting problem through this process. After trapping 
in a local minimum in this phase, the LM cannot escape 
from this point and this problem cause an overfitting. But, 
by proposed strategy, it is clear that this procedure is reduced 
monotonically in each presented stages based on combined 
model.

Also, in the following the proposed forecast strategy 
is applied over the historical data of wind speed and solar 

irradiance gathered from Inner Mongolia which is used as real 
wind speed and solar irradiance during the simulation. The 
mentioned data has been presented in Fig. 5.

In this section the proposed ISSO implementation is con-
sidered in training mechanism. This algorithm is coupled with 
proposed forecast engine to avoid overfitting which is a serious 
problem in training process. By occurring the overfitting in 
training phase, obtained training error stays to reduction and 
it seems that the training process developments, while indeed 
the generalization proficiency of the forecast engine degrades 
and it fails its forecast skill for hidden forecast samples. But, 
as the prediction error is not accessible in the training stage, 
the error of validation sample is considered for its estimation. 
The obtained error from validation samples can be considered 
as prediction of forecast engine error for hidden prediction 
sample. This criteria is an appropriate metric tool for testing 
the forecast engine ability in overfitting problem. To improve 
the efficiency of validation error, its samples must be same as 
prediction samples where in this state the validation error can 
provide close estimate of the prediction error. In this paper, 
50 days historical data for each forecast engine are divided 
in a training and validation subsets including the first 49 days 
(49 × 24 = 1176 h samples) for training and 1 day for valida-
tion samples are considered. By this model, the ISSO trained 
each forecast engine in proposed forecast engine structure. The 
proposed ISSO mechanism is considered as an optimization 
problem where the error of the constructed training samples 
or training error is considered as objective function. And the 
weights and neurons are considered as decision variables. 
First, the ISSO population is initialized randomly and the ini-
tial value for decision variables will be considered. In each 
iteration, the decision variables changes based on training error 
improvement. In final iteration, the evaluation process of vali-
dation error will done. Once, the validation error began to rise, 
the generality performance of forecast engine starts to reduce 
(the overfitting began to effect the training process) so, the 
training of forecast engine should be transferred to the match-
ing iteration. Furthermore, the weights of forecast engine will 
be set based on decision variables due to the best individual 
of the optimization process of ISSO. So, the trained forecast 
engine can forecast the future values for the next horizon.

Also, for assessment the proposed technique accuracy 
diverse error criterions measured in this test case as; MAE, 
normalized mean absolute percentage error (NMAPE), root 
mean square error (RMSE). In the next, mathematical equation 
of these errors are presented: 
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where N is the total amount of data points; PVi
f is the fore-

casted PV power data, PVi
a is the real PV power data, and its 

average is presented by bar. 

(19)MAE =
1

N

N∑
i=1

|||PV
f

i
− PVr

i

|||

(20)RMSE =

√√√√√ 1

N

N∑
i=1

(
PV

f

i
− PVr

i

)2

Also, for giving the fair comparison of proposed method 
with published works, all situations are considered in this 
paper same as (Ghadimi and Firouz 2015). Gained results for 
four seasons through the comparison with other techniques 
are presented in Table 1 through comparison of (Ghadimi 
and Firouz 2015). Also, this table has been presented as 
graphical analysis in Fig. 6. All of the presented results in 
this table are quoted directly from (Ghadimi and Firouz 
2015). By considering to this table it can be considered that 
our proposed method could provide better results in all sea-
sons for all error criterions.

As presented in Fig. 6, it can be considered that the 
proposed method provides minimum error in comparison 
with other well-known methods. In this figure, low space of 

Table 1  Obtained results of proposed forecasting method through the comparison with other models

Methods Error Winter Spring Summer Fall

23th Dec. 5th Dec. 12th May 27th Apr. 26th Jun. 27th Aug. 18th Oct. 28th Sep.

BPNN NMAPE 29.65 35.47 18.55 23.45 21.05 18.67 15.17 32.74
MAE 1.08 1.47 1.56 1.98 1.88 1.35 0.81 2.01
RMSE 1.92 2.15 2.04 2.73 2.20 1.86 0.96 2.68

RBFNN NMAPE 16.71 35.46 17.24 18.21 10.84 5.12 7.22 21.86
MAE 0.61 1.47 1.45 1.54 0.94 0.37 0.38 1.34
RMSE 0.74 1.72 1.94 2.20 1.43 0.45 0.49 1.80

WT + BPNN NMAPE 11.94 30.26 16.99 17.95 17.62 5.98 13.07 22.44
MAE 0.43 1.25 1.44 1.51 1,54 0.43 0.70 1.38
RMSE 0.62 1.66 1.70 1.89 2.05 0.55 0.79 1.52

WT + RBFNN NMAPE 8.16 13.81 8.91 13.14 8.54 4.25 4.32 12.17
MAE 0.29 0.57 0.75 1.11 0.74 0.30 0.23 0.75
RMSE 0.40 0.64 1.01 1.57 1.06 0.38 0.32 0.87

Proposed NMAPE 6.77 10.20 6.52 10.21 5.94 3.10 3.03 9.47
MAE 0.16 0.41 0.52 0.93 0.64 0.21 0.19 0.52
RMSE 0.30 0.39 0.84 1.31 0.84 0.26 0.26 0.64

Fig. 6  Comparison of the proposed solar PV output forecast strategy with other methods
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curves means better accuracy and as presented in this figure 
the blue line space is the lowest space in comparison with 
other techniques.

To prove that the proposed active power allocation 
method outstripped the classical average technique, we 
assessed the efficacy of the proposed active power distribu-
tion for active power control to meet the power obligation 
of the power grid when the energy storing batteries were not 
complex in active power control (Case 1) or complicated in 
it (Case 2).

In first Case, the desired output for proposed composed 
strategy given by the upper power grid was a stair-wise 
signal as shown in Fig. 7, where the power levels were 
set at minimum in 2000 and maximum in 10,000  kW, 

with transitions occurring at 3, 5, 10, 13, 15, and 20 h, 
respectively.

Furthermore, the proposed method of grid-connected 
constituent amount for wind turbines and PV modules has 
been other methods as presented in Fig. 8. Regarding to 
maximizing the operation of the directive ability of wind 
turbines, the PV modules did not control to start till the regu-
lating ability of wind turbines was insufficient to satisfy the 
anticipated output power. So it seems that the grid-connected 
number of PV modules was non-zero where the grid-con-
nected value of wind turbines was 8. As presented in this 
figure, on/off switching values of the proposed technique 
is less than that of the average model, clearly, in the whole 
sequence of simulation experimentation.

For the second case, the anticipated output for proposed 
complex model given by the upper power grid was a stair-
wise signal as shown in Fig. 9, while the power levels were 
set at minimum 4000, and maximum 11,000, by transitions 
occurring at 3, 5, 11, 16, and 19 h, correspondingly. Such an 
output power request route was characteristic in daily opera-
tion of the complex model. The output of proposed complex 
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Fig. 7  Power control effects by the average method (red solid) power 
prediction (blue dotted)

Fig. 8  Statistics of grid-connected component number by using the proposed method

Fig. 9  SOC of the energy storage battery
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model evaluated by using the power allocation method was 
associated with the anticipated output power in Fig. 9. As 
shown in this figure, once the sum of prediction power of the 
wind turbines and PV modules are more than the anticipated 
output power, the complex model output controlled by the 
proposed allocation technique could track the setting power, 
where the output power curve was without volatility and is 
smooth.

Formerly, once the total forecast power was under the 
anticipated output power, the energy storage batteries were 
controlled to discharge till the SOC of the energy storage 
batteries was equivalent to SOCmin, as presented in Fig. 9. 
So, output power of proposed complex model could track the 
setting power after discharging in the part where SOC was 
above SOCmin. Consequently, the wind power and PV mod-
ules were the maximum power output as the forecast power 
when SOC was under SOCmin to enhance the utilization rate 
of wind and solar energy resources for the machineries.

6  Conclusion

In this paper, an active power control strategy named com-
plex control block has been presented through multi-objec-
tive algorithm. In this model, short-term wind and solar 
power have been forecasted through application of an intel-
ligent method. In this model, feature selection, three stage 
forecast engine has been considered. Where, in this process 
all of the forecast engine stages have been optimized by SSO 
algorithm. Where, the weights of forecast engine optimized 
by this algorithm. Furthermore, the active power alloca-
tion has been considered as an optimization problem, and a 
decoration search algorithm has been considered to search 
the optimal explanation. Obtained results proof the validity 
of proposed method though improvement of active power 
output performance and decrease the fluctuation rate, and 
in a same time keep the maintain of SOC in batteries in an 
appropriate range. Furthermore, it could keep the maximi-
zation of utilization for regulation aptitude of wind turbines 
and decrease amount of on-or-off switching of wind turbines 
as well as PV modules.
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